

Wärmepumpe im Bestand

Wie rüste ich meine Haus mit einer Wärmepumpe aus

Vorstellung der Energieberater

Martin Knaus

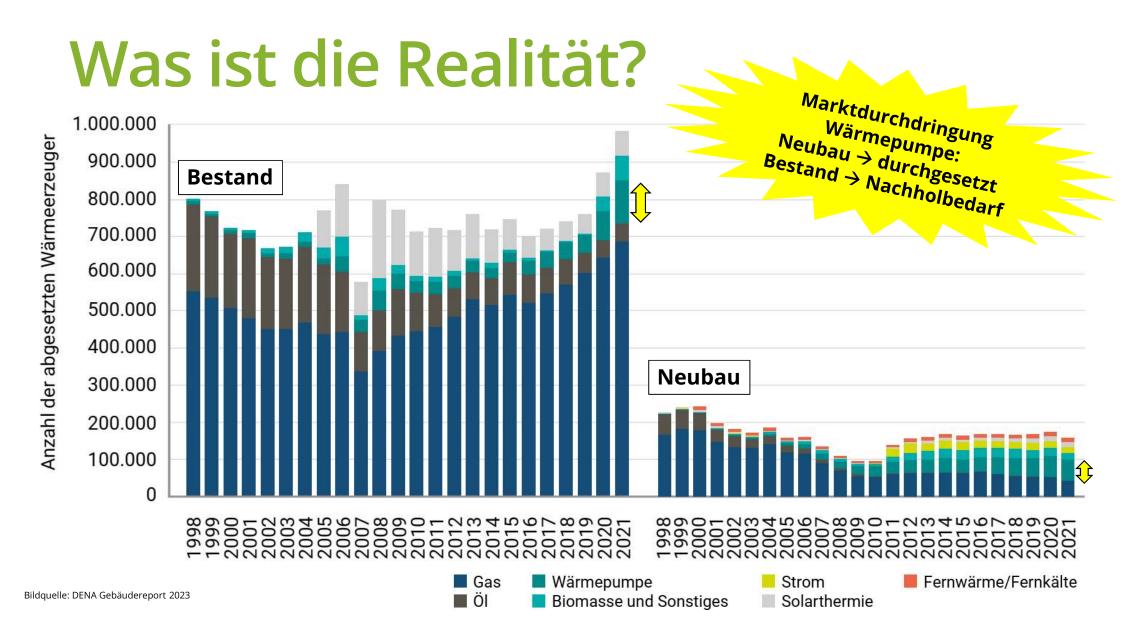
Martin Handke

Kapitel

- 1. Bund vs. Realität
- 2. Vorurteile
- 3. Technologie
- 4. Effizienz
- 5. Wirtschaftlichkeit
- 6. Beispielhäuser
- 7. Förderung
- 8. Häufige Fragen
- 9. Fazit
- 10. Wie geht's weiter

1. Bund vs. Realität

Was ist vom Bund geplant?


GIPFEL MIT BRANCHENVERTRETERN

Habeck will 500.000 neue Wärmepumpen im Jahr

500.000 neue Stromheizungen sollen schon bald jährlich installiert werden. Doch

- Bundesregierung: plant 6 Mio. Wärme-pumpen bis 2030
- Koalitionsvertrag: 65 % Erneuerbare-Energien-Anteil für neue Heizungen ab 2024

2. Vorurteile

2. Ist Wärmepumpe im Bestand technisch möglich?

Funktioniert Wärmepumpe auch bei Minusgraden?

Muss ich dann im Winter frieren?

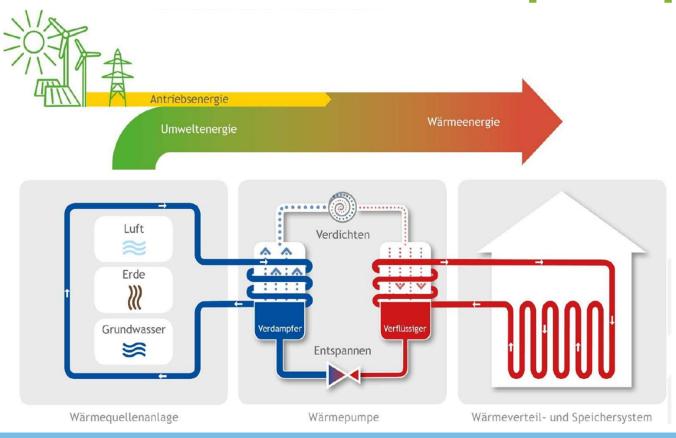
Wärmepumpe auch in ungedämmtem Haus möglich?

Wärmepumpe nur mit Fußbodenheizung möglich?

Ist Wärmepumpe im Bestand ökologisch & ökonomisch sinnvoll?

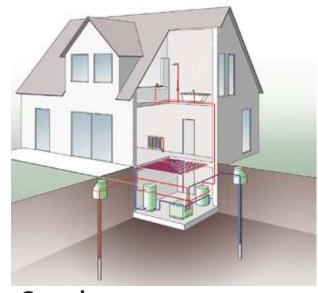
Wird Strom nicht auch aus Gas und Kohle hergestellt?

Ist mit Strom heizen nicht zu teuer?

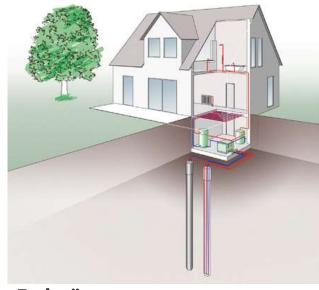

Woher soll der ganze Strom kommen?

Ist Wärmepumpe eine Stromheizung?

Bildquelle: eigene Fotos


3. Technologie

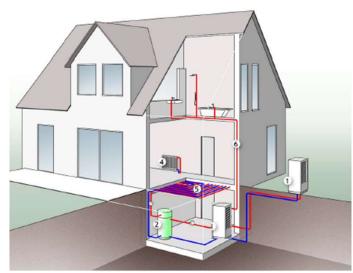
Funktionsweise Wärmepumpe

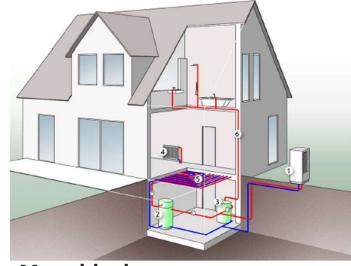


Wärmepumpe fängt kostenlose Umweltenergie effektiv ein!

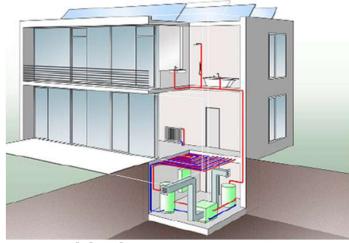
Grundwasser- & Erd-Sole-Wärmepumpe

Grundwasser

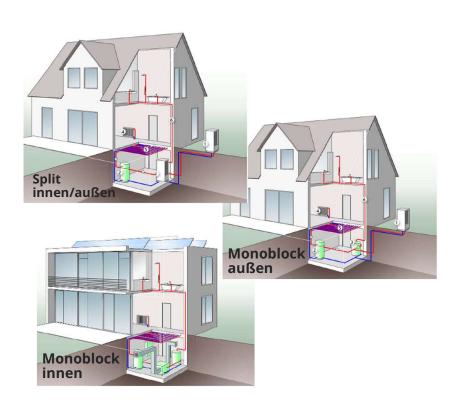

Erdwärme-Sonde


Erdwärme-Kollektor

Quelltemperatur von Erde / Grundwasser ist konstant (ca. 8-12°C)!


Fokus des Webinars: Luft-Wasser-Wärmepumpe

Split innen/außen


Monoblock außen

Monoblock innen

Quelltemperatur von Luft ist jahreszeitabhängig (Außenluft)!

Luft-Wasser-Wärmepumpe

Vorteile

- Kein Genehmigungsverfahren
- > Ortsunabhängige Verfügbarkeit
- > Einfache Erschließung
- Geringe Investitionskosten
- > Einfach nachrüstbar bei Sanierung

Zu beachten

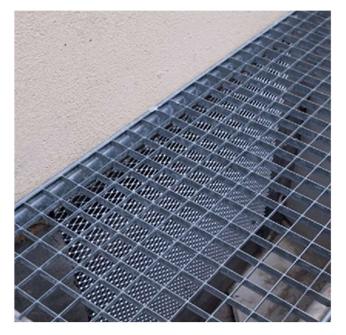
- Gesetzliche Schallanforderung
- Anforderung an Aufstellort
- Notwendiger Platzbedarf

Luft-Wasser-Wärmepumpe fast immer nachrüstbar!

Luft-Wasser-Wärmepumpe: Monoblock

Monoblock (Innen) Keller

Monoblock (Innen) Dachspeicher



Luft-Wasser-Wärmepumpe: Monoblock

Monoblock (Innen) Keller über Lichtschacht

Luft-Wasser-Wärmepumpe: Monoblock

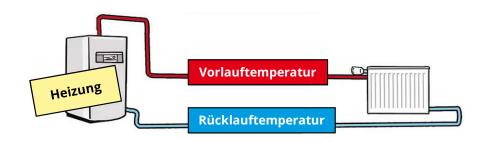
Monoblock (Außen)

Monoblock (Außen) Reihenhaus

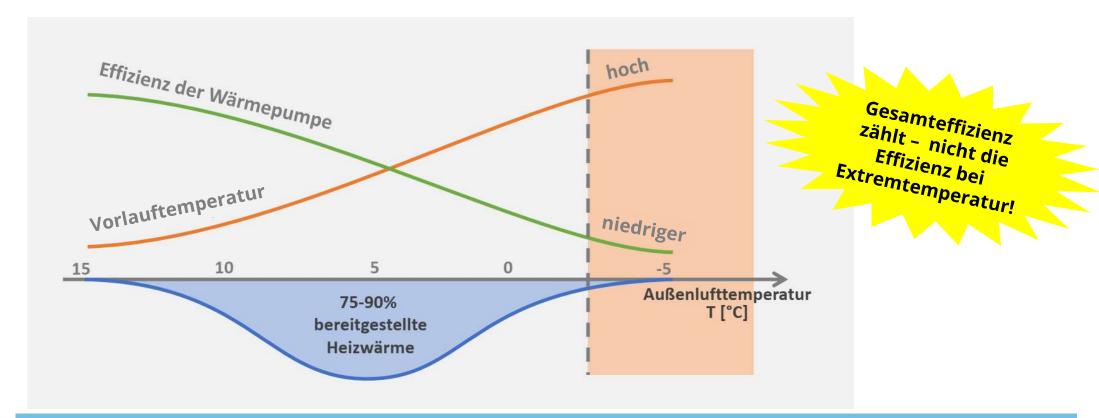
Quellen: https://www.vaillant.de/heizung/produkte/produktgruppen/waermepumpe/ Eigene Aufnahme

Luft-Wasser-Wärmepumpe: Split

Split-Wärmepumpe



4. Effizienz


Begriffsbestimmung: Vorlauftemperatur

Vorlauftemperatur ist von aktueller Außentemperatur und des Dämmzustandes des Hauses abhängig

Vorlauftemperatur: Heizwassertemperatur, die in den Heizkreislauf eingeleitet wird

Effizienz der Luft-Wasser-Wärmepumpe

Effizienz der Wärmepumpe über das gesamte Jahr ist entscheidend!

Effizienz der Wärmepumpe: Jahresarbeitszahl (JAZ)

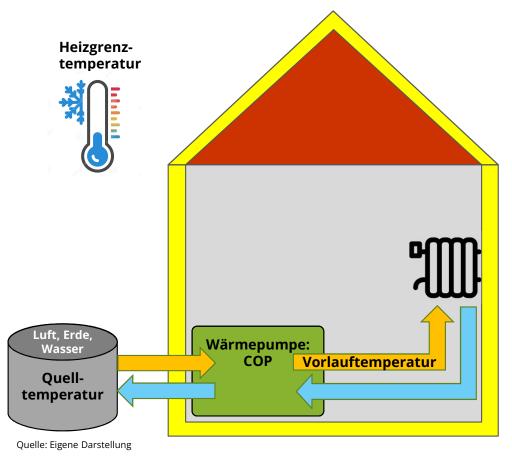
JAZ ist Maßstab für:

- effizienten Betrieb der WP

- im Gebäude
- über gesamtes Jahr


Luft/Wasser-Wärmepumpen

- Wärme
- Strom (Wärmepumpe)


Heizen mit Ga

Sole/Wasser-Wärmepumpen

Feldstudie zeigt: Wärmepumpen im Bestand funktionieren

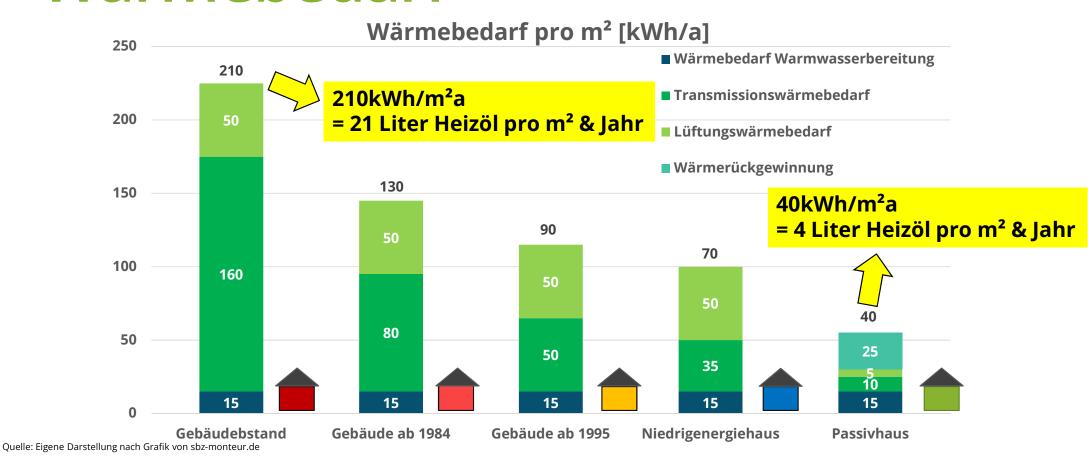
Effizienz der Wärmepumpe: Einflussfaktoren auf JAZ

> COP - Coefficient Of Performance

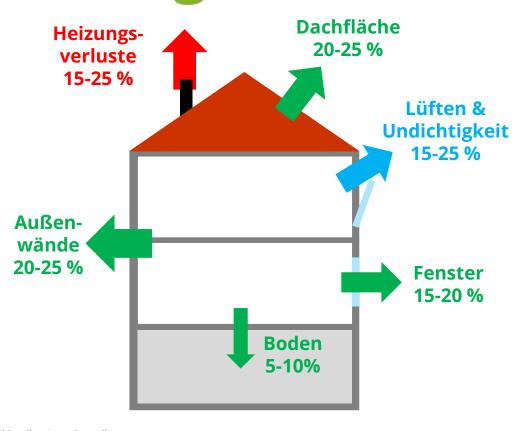
- → Laborwert: Wie effizient ist Wärmepumpe?
- → Vergleich von Wärmepumpen-Modellen

> **Vorlauftemperatur**

- → Abhängig von Heizfläche
- → Abhängig von Dämmzustand des Hauses


> <u>Heizgrenztemperatur</u>

- → Temperatur, bei der Heizsystem anschaltet
- → Abhängig von Dämmung:
 - 10 °C → Neubau → 186 Heiztage
 - 15 °C → durchschnittliches Haus → 261 Heiztage
 - 18 °C → schlecht gedämmtes Haus → 310 Heiztage


> Quelltemperatur

→ Abhängig von Wärmequelle Luft, Erde & Wasser

Effizienz der Gebäudehülle: Wärmebedarf

Effizienz der Gebäudehülle: Energieverluste

Es gibt drei Arten von Energieverlusten im Haus:

- > Transmission
- **>** Lüftung
- > Anlagentechnik

Bildquelle: eigene Darstellung

Effizienz der Gebäudehülle: Dicke Wand = gute Dämmung?

Gleiche Isolierleistung je Baustoff

Dämmstoff 2 cm

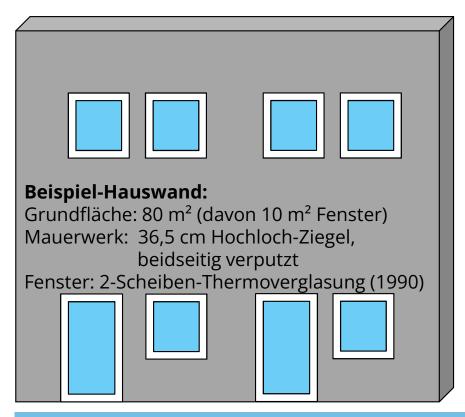
Leichtbetonsteine 6 cm

Nadelholz 6,5 cm

Porenziegel 8 cm

Strohlehm 23,5 cm

Hochlochziegel 29 cm


Klinker 90 cm

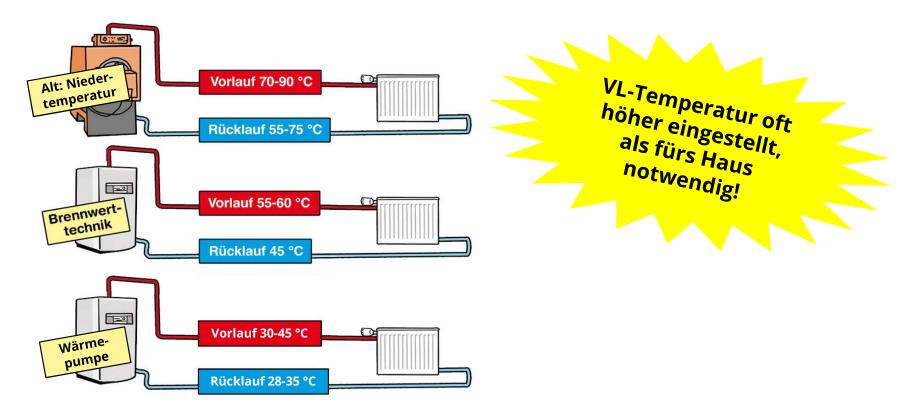
Massivbeton 105 cm

Massive (Hochlochziegel-)Wand ist keine Dämmung!

Effizienz der Gebäudehülle

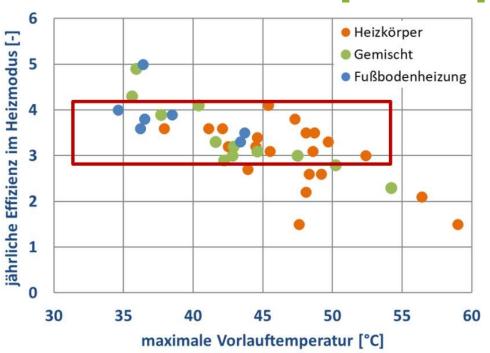
Hauswand unsaniert:

- → Energieverlust: 14.000 kWh/Jahr
- → 1.400 m³ Erdgas / 1.400 L Erdöl / 3.500 kWh Strom


Hauswand saniert:

- Mauerwerk: **Dämmung 12 cm**
- Fenster: 3-Scheiben-Wärmeschutzverglasung
- → Energieverlust: 2.200 kWh/Jahr
- → 220 m³ Erdgas / 220 L Erdöl / 550 kWh Strom

Dämmen lohnt sich!


Bildquelle: Eigene Darstellung

Vorlauftemperatur von Heizsystemen

Je geringer die Vorlauftemperatur, desto geringer die Energieverluste!

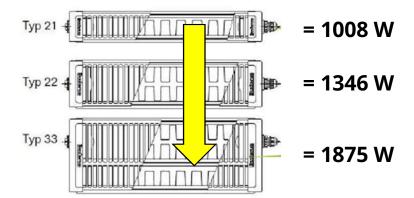
Effizienz der Wärmeverteilung mit Wärmepumpe

- JAZ abhängig von Vorlauftemperatur
- Vorlauftemperatur abhängig von Wärmeverteilung

Wärmepumpe kann mit jedem Verteilsystem effizient betrieben werden!

Vorlauftemperatur senken: Ansätze

Auch bei fossiler Heizung gültig!


<u>Vorlauftemperatur senken</u>	<u>Aufwand</u>	<u>Effekt</u>
Hydraulischer Abgleich	gering	++
Heizkurvenoptimierung	gering	++
Austausch ungünstige Heizkörper	mittel	+++
→Niedertemperaturheizkörper		
Flächenheizung (Fußboden, Wand, Decke)	groß	+++
Dämmung	groß	++++

Je abgesenktes °C Vorlauf → Energiebedarf um ca. 2,5 % reduziert!

Vorlauftemperatur senken: Niedertemperaturheizkörper

Einfachste Variante:

→ Heizkörper vergrößern

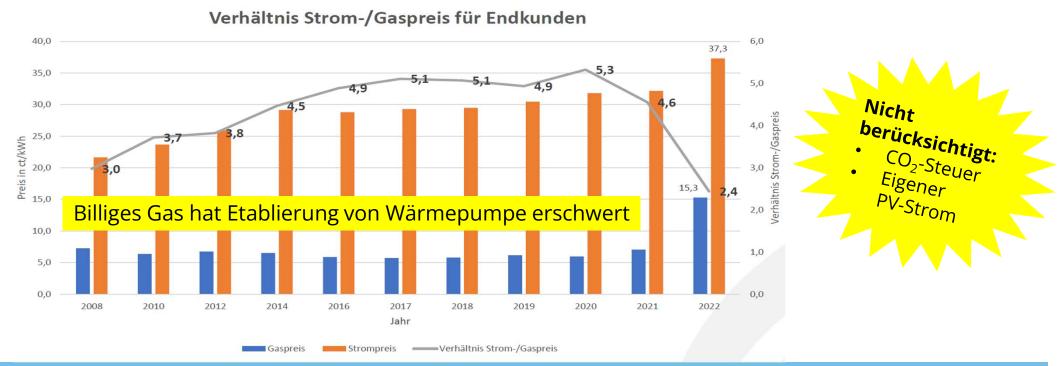
Weitere Möglichkeit:

→ Integrierte elektrische Lüfter

→ dadurch "virtuell" größer

5. Wirtschaftlichkeit

Wirtschaftlichkeit


Wann amortisiert sich eine Gasheizung?

Effizienz & Wirtschaftlichkeit

Jede kWh Wärme, die <u>nicht</u> durch die Fassade verloren geht, muss <u>nicht</u> aufwändig erzeugt werden!

Das Gesamtsystem zählt - es ist nicht erstrebenswert, ineffizientes Gebäude mit effizienter Wärmepumpe zu beheizen.

Wirtschaftlichkeit: Erdgas oder Wärmepumpe?

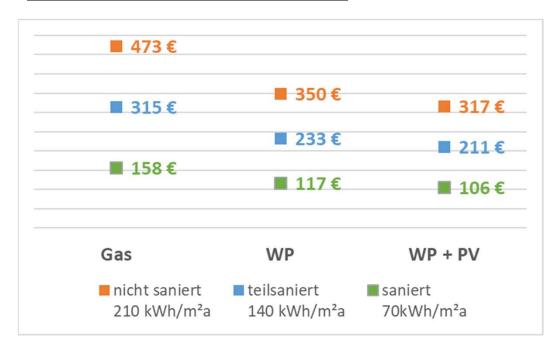
Strom/Gas-Verhältnis kleiner als JAZ → Wärmepumpe günstiger als Gasheizung

Wirtschaftlichkeit: Betriebskosten

Eckdaten

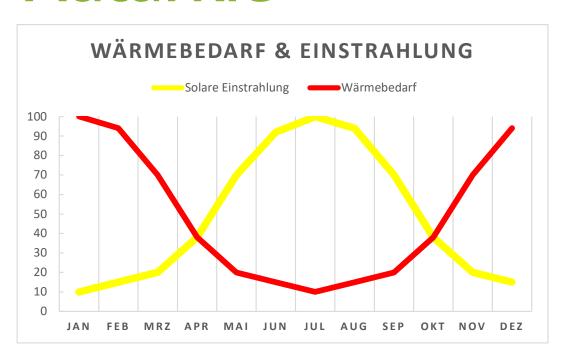
Wohnfläche: 150 m²

Gas: 0,18 EUR / kWh


Strom Netz: 0,40 EUR / kWh

Strom PV: 0,15 EUR / kWh

PV-Anteil: 15-25 %


WP JAZ: 3

Monatliche Heizkosten

Bildquelle: Eigene Darstellung

Wärmepumpe und PV: Autarkie

- ➤ Ca. **15–25 % Abdeckung** des WP-Bedarfs normalerweise im Bestand mit PV möglich
- Aber: Je höherSanierungsstand, desto höherPV Anteil

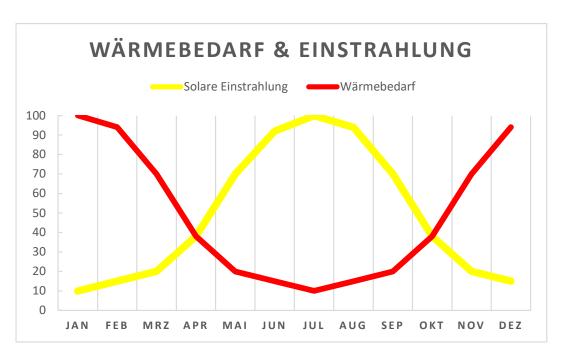
z.B. EH 40: deutlich höherer PV-Anteil

Autarkie mit PV und Wärmepumpe gegenwärtig nicht möglich!

Wärmepumpe und PV: Beispielrechnung Autarkie

5 kW

Anschlussleistung PV-Anlage:


15 kWp

Beispiel: WP Anschlussleistung x 3 = PV kWp → 40-45% Abdeckung

40 - 45%

Autarkie

Wärmepumpe und PV: Wirtschaftlichkeit

PV-Stromkosten:

- 10–12 Cent/kWh
- konstant für 30–40 Jahre
- Dauerhaft konkurrenzlos günstig!

→ effektive CO₂-Reduktion

Wärmepumpe mit PV kombinieren -> effektive Stromkostenreduktion

Wärmepumpe Stromquellen

PV-Nutzung

über Netzstromkreis nutzbar

Energiemanagment (Smart-Grid)

- PV-Überschüsse können tagsüber als Wärme im Haus gespeichert werden
 - → Optimierung der Eigennutzungsquote

Wärmepumpentarif

- Zweiter Stromzähler notwendig
- Steuerbarer Verbraucher (Sperrzeiten möglich)
 - → Grund für günstigeres Preisangebot
- Kaskadenschaltung notwendig

6. Beispielhäuser

Beispielhaus 1

Beschreibung des Versorgungssystems				
Einbaujahr WP	2015			
Wärmequelle WP	Außenluft			
Wärmerzeuger	Wärmepumpe: RH, TWE Heizstab: RH (im Speicher), TWE (im Speicher) Kaminofen: RH			
Wärmeübergabesystem	Mischsystem: 44 % FBH (KG, EG), 56 % Plattenheizkörper und FBH (KG, EG)			

Messdaten für die Auswerteperiode Juli 2018 bis Juni 2019					
Spez. Heizwärmeverbrauch*	140 kWh/(m²a)	JAZ 3 (WP & HS)	2,7		
T_WP_Heizkreis: mittel	41,3 °C	Verhältnis HS zu Verd.: RH/TWE	0 % / 1 %		
T_ WP_TWS-Beladung: mittel	46,8 °C	Wärmeanteil der WPA für TWE	7 %		

Informationen zu durchgeführten Sanierungsmaßnahmen			
Außenwand	Originalzustand		
Fenster	Originalzustand		
Dach	Originalzustand		
Wärmeübergabesystem	Originalzustand		
Wärmeerzeuger	2015: Austausch Ölkessel (Bj. 1981) durch Wärmepumpe		

Kommentar

* Die Angabe des spez. Heizwärmeverbrauches bezieht sich nur auf die Wärmepumpenanlage. Der Kaminofen wird nach Auskunft der Bewohner während der Projektlaufzeit "nur sporadisch" genutzt.

Beispielhaus 2

Beschreibung des Versorgungssystems				
Einbaujahr WP	2016			
Wärmequelle WP	Außenluft			
Wärmerzeuger	Wärmepumpe: RH, TWE Heizstab: RH (im Vorlauf), TWE (im Speicher) Kaminofen: RH			
Wärmeübergabesystem	Mischsystem: 14 % Plattenheizkörper (KG), 86 % FBH (EG, DG)			

Messdaten für die Auswerte	periode Juli 2018 bi	s Juni 2019	
Spez. Heizwärmeverbrauch*	120 kWh/(m²a)	JAZ 3 (WP & HS)	3,5
T_WP_Heizkreis: mittel	33,1 °C	Verhältnis HS zu Verd.: RH/TWE	1 % / 2 %
T_ WP_TWS-Beladung: mittel	45,9 °C	Wärmeanteil der WPA für TWE	19 %

Außenwand	Originalzustand, außer Vorbau im EG: 2019: 200 mm Dämmung (außen)	
Fenster	Originalzustand	
Dach	2017: 120 mm Dämmung (GW)	
Wärmeübergabesystem	2017: Austausch Plattenheizkörper, Einbau FBH	
Wärmeerzeuger	2016: Austausch Gaskessel durch Wärmepumpe	

Kommentar

* Die Angabe des spez. Heizwärmeverbrauches bezieht sich nur auf die Wärmepumpenanlage. Der Kaminofen, der in der Garage eingebaut ist und über den senkrechten Durchzug Wohn-/Esszimmer (EG) und Schlafzimmer (DG) mit beheizen kann, wird nach Angabe der Bewohner "an Wochenenden genutzt" und hat von Herbst 2018 bis Mitte Januar 2019 2,5 Raummeter Holz verbraucht.

Beispielhaus 3

Beschreibung des Versorgungssystems				
Einbaujahr WP	2013			
Wärmequelle WP	Außenluft			
Wärmerzeuger	Wärmepumpe: RH, TWE Heizstab: RH (im Speicher), TWE (im Speicher)			
Wärmeübergabesystem	Mischsystem: 77 % Heizkörper (EG, DG, KG), 9 % FBH (EG), 13 % Heizkörper und FBH (EG); Heizkörper sind teils Platten- und teils Gliederheizkörper			

Messdaten für die Auswerte	periode Juli 2018 b	is Juni 2019	
Spez. Heizwärmeverbrauch	99 kWh/(m²a)	JAZ 3 (WP & HS)	2,9
T_WP_Heizkreis: mittel	39,5 °C	Verhältnis HS zu Verd.: RH/TWE	0 % / 0 %
T_ WP_TWS-Beladung: mittel	43,9 °C	Wärmeanteil der WPA für TWE	24 %

Außenwand	Originalzustand	
enster	2-fach-Verglasung (Wärmeschutz)	
Dach	1996: 140 mm Zwischensparrendämmung (PS);	
	Oberste Geschossdecke: 40 mm Dämmung (PS)	
ärmeübergabesystem	Originalzustand	
Värmeerzeuger	2013: Austausch Öl-/ Holzkessel (Bj. 1976) durch Wärmepumpe	

7. Förderung

Förderung

Heizungstauschbonus:
Olheizung
Gasheizung
20 Jahre alt

- Wärmepumpenbonus:

 Erd-Wärmepumpe

 Grundwasser-
 - Wärmepumpe oder Natürliche Kältemittel-Bonus

(Stand: 18.10.2022)

Einzelmaßnahmen Zuschuss	Zuschuss	iSFP- Bonus	Heizungs- tausch- Bonus	Wärme- pumpen- Bonus	Max. Förder- satz	Fach- planung
Solarthermie	25 %				25 %	
Biomasse	10 %		10 %		20 %	
Wärmepumpe (JAZ 2,7)	25 %		10 %	5 %	40 %	
Innovative Heizungstechnik	25 %		10 %		35 %	50 %
EE-Hybrid ohne Biomasseheizung	25 %		10 %	5 %	40 %	
EE-Hybrid mit Biomasseheizung	20 %		10 %	5 %	35 %	

Bildquelle: eigene Fotos, Stand 01.01.2023

8. Häufige Fragen

Auslegungstemperatur der Wärmepumpe

Was sagt die DIN 12831:

➤ Wärmepumpe muss bei -15°C Außentemperatur Haus auf +20°C heizen

Was sagt die Statistik und Physik zur Auslegungstemperatur:

- Klimawandel verschiebt Auslegungstemperatur weiter nach oben
- Statistik: -15°C an 10 Tagen in 20 Jahren: 10 Tage/7300 Tage = 0,137% Anteil
- > Interne Wärmegewinne im Haus (elektr. Geräte, Sonne, Bewohner etc.) nicht berücksichtigt
- Überdimensionierung der Heizkörper (Einbau per "Pi mal Daumen")
 - → Wärmepumpe etwas kleiner auslegbar als Berechnung vorgibt!
 - → Auslegungstemperatur ohne Komforteinbußen um 2-3°C erhöhen!

Luft-Wasser-Wärmepumpe: Abstandsregelung

Abstand zur Grundstücksgrenze

- > 3m Abstand eigene Gebäude zu Nachbargrundstück
- Gehört Wärmepumpe zum Gebäude?
 - → Unterschiedliche Gerichtsurteile
 - → Gesellschaftliche Notwendigkeit gegeben!

NEU ab 01.01.2024: bei Luft-Wasser WP: Anforderungen an die Geräuschemission des Außengerätes min. **5 % niedriger** als in der Ökodesign-Verordnung angegeben

Luft-Wasser-Wärmepumpe: Lautstärke


Maßnahmen zur Schallreduzierung

- Aufstellung Richtung Straße
- Nicht zwischen Mauern
- Innenaufstellung (Monoblock)
- > Schallschutzhauben
- Leise Geräte
- Abstand zum Nachbarn
- > Im Vorfeld mit Nachbarn sprechen

Berechnung mit Tool des BWP: www.waermepumpe.de/schallrechner/

Art des Gebiets nach Bauverordnung	Lautstärke- grenze Tag (ab 6:00 Uhr)	Lautstärke- grenze Nacht (ab 22:00 Uhr)
Reine Wohngebiete	50 dB(A)	35 dB(A)
Allg. Wohngebiete & Kleinsiedlungen	55 dB(A)	40 dB(A)
Mischgebiete	60 dB(A)	45 dB(A)

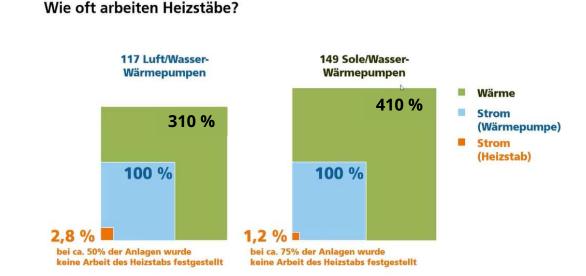
Komplexität des Heizsystems

... weniger Investition

... weniger Regelung

Komplexität niedrig ...

... weniger Defekte


... weniger Wartung

... weniger "Energiefresser"

Planung: Wärmepumpensystem so einfach wie möglich und nur so komplex wie notwendig.

Elektrische Heizstäbe

- Elektrischer Heizstab hat bestenfalls "JAZ = 1"
- Oft überhaupt nicht in Gebrauch
- ➤ Investitionskosten ca. 1000-2000 EUR

Effizienz der Wärmepumpe bei −5 °C bei z.B. Faktor 2 (statt 3) → Heizstab bei moderner Wärmepumpe nicht zwingend notwendig

Pufferspeicher

Pro

- Hydraulische Weiche: Trennung von Erzeuger- und Verbraucherkreis
- Gegebenenfalls notwendig für Warmwassererzeugung
- Nachtstromtarif nutzen / Sperrzeiten überbrücken
- PV-Strom als Warmwasser speichern

Contra

- Zusätzliche Komponente mit Energieverlust
- Mehrkosten für Anschaffung des Pufferspeichers
- > Zusätzliche Komplexität

Pufferspeicher so klein wie möglich!

9. Fazit

Fazit: Wärmepumpe

Wärmepumpe funktioniert bei Minusgraden!

Im Winter muss man mit Wärmepumpe nicht frieren!

Wärmepumpe im ungedämmten Haus möglich, aber selten sinnvoll!

Wärmepumpe auch ohne Fußbodenheizung möglich!

Aus technischer Sicht spricht wenig gegen den Einsatz einer Wärmepumpe!

Fazit: Wärmepumpe

Bei JAZ = 2 mit deutschem Strommix bereits ökologischer als Heizen mit Gas!

Ist mit Strom heizen teuer? Kommt auf JAZ und Gebäudehülle an!

Stromquellen:

- Dach-PV
- Windkraft
- Netz-Strommix(50 % erneuerbar)

Wärmepumpe nutzt
Strom sehr effektiv

→ keine
Stromheizung!

Wärmepumpe reduziert effektiv CO₂-Emissionen.

→ Bei sinnvollem Einsatz (Dämmung!) wird der Geldbeutel geschont.

10. Wie geht's weiter?

Wie geht's weiter?

Machen Sie selbst den Wärmepumpentest!

- 1. Voraussetzung: Geeignete Klimabedingungen, konstant (kalte) Außentemperaturen (Novembertag ohne Sonne)
- 2. Heizungspumpendrehzahl rauf (höchste mögliche Stufe)
- 3. Nachtabsenkung abschalten
- 4. Heizkörper voll aufdrehen
- 5. 24 Stunden warten Raumtemperaturentwicklung beobachten
- **6. Heizkurve schrittweise absenken**, bis gewünschte Raumtemperatur noch erreicht wird. Nach jedem Schritt mind. 24 Stunden beobachten.
- 7. Zieltemperatur: 21 °C in Wohnräumen ausreichend!
- 8. Absenkung im laufenden Betrieb nur durch Betreiber*in möglich.

VL-Temperatur kleiner 50 °C → Gute Basis für Einsatz von Wärmepumpe

Kontakt

Martin Knaus

Energieberater

Telefon: 089 / 277 8089 -17

E-Mail: martin.knaus@ea-ebe-m.de

Martin Handke

Energieberater

Telefon: 089 / 277 8089 -15

E-Mail: martin.handke@ea-ebe-m.de

Energieagentur Ebersberg-München gGmbH

Altstadtpassage 4 . 85560 Ebersberg Münchener Straße 14 . 85540 Haar Münchner Straße 72 . 85774 Unterföhring

Stand: 17.01.2023